Analysis of worm-like locomotion
نویسندگان
چکیده
Nature is a storehouse of great ideas, which are mostly so well planned, that engineers can apply them directly via examining, understanding and imitating the natural working principles. Snakes and worms can be found in almost every region of our planet. Their success is mainly based on the simple construction of their body and their robust locomotion technique. Snakes and worms move their body periodically, to generate propulsive force and get forward, using the interaction with the surrounding environment. The aim of this work is the analysis of a particular worm-like locomotion technique through numerical simulations. The worm is modeled by a multibody system containing lumped masses constrained to each other by ideal rigid rods. The periodic motion of the worm body is achieved via the use of an artificial muscle-like actuator system. The results and experiences can be exploited in future work when a worm-like robot will be built for exploration and rescue purposes.
منابع مشابه
Optimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملThe Optimal Locomotion of a Self-Propelled Worm Actuated by Two Square Waves
Worm-like locomotion at small scales induced by propagating a series of extensive or contraction waves has exhibited enormous possibilities in reproducing artificial mobile soft robotics. However, the optimal relation between locomotion performance and some important parameters, such as the distance between two adjacent waves, wave width, and body length, is still not clear. To solve this probl...
متن کاملWorm-like robotic systems: Generation, analysis and shift of gaits using adaptive control
The starting point of this work is a biologically inspired model of a worm-like locomotion system (WLLS). The mechanical model comprises discrete mass points connected by viscoelastic force actuators. Ground contact is constituted by ideal spikes which act as constraint forces, preventing backward motion for each mass point equipped with them. The distances between each two consecutive mass poi...
متن کاملMicrofluidic Device to Measure the Speed of C. elegans Using the Resistance Change of the Flexible Electrode
This work presents a novel method to assess the condition of Caenorhabditis elegans (C. elegans) through a resistance measurement of its undulatory locomotion speed inside a micro channel. As the worm moves over the electrode inside the micro channel, the length of the electrode changes, consequently behaving like a strain gauge. In this paper, the electrotaxis was applied for controlling the d...
متن کاملDeriving Shape-Based Features for C. elegans Locomotion Using Dimensionality Reduction Methods
High-throughput analysis of animal behavior is increasingly common following the advances of recording technology, leading to large high-dimensional data sets. This dimensionality can sometimes be reduced while still retaining relevant information. In the case of the nematode worm Caenorhabditis elegans, more than 90% of the shape variance can be captured using just four principal components. H...
متن کامل